Matrix Multiplication

What does it mean?

Matrix Multiplication - Meaning

- Multiple Input $C=A B$

$$
b_{p}=c_{p}
$$

$$
\begin{aligned}
& A B=A\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{p}
\end{array}\right] \\
& =\left[\begin{array}{llll}
A b_{1} & A b_{2} & \cdots & A b_{p}
\end{array}\right]
\end{aligned}
$$

Matrix Multiplication - Meaning

The notation $g \circ f$ is read as " g circle f ", " g round f ", " g about f ", " g composed with f ", " g after f ",

- Composition " g following f ", " g of f ", " f then g ", or " g on f ".
- Given two functions f and g, the function $g(f()$.$) is the$ composition g° f.

Matrix multiplication is the composition of two linear functions.

Matrix Multiplication - Meaning

- Composition

Matrix Multiplication - Meaning

Matrix Multiplication - Meaning

The composition of A and B is

$$
C=\left[\begin{array}{llll}
A b_{1} & A b_{2} & \cdots & A b_{p}
\end{array}\right]
$$

Example

reflection about the x-axis
rotation by 180°

Example
 $$
\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]\left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right]=[\quad]
$$

reflection about the x-axis
rotation by 180°

